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I. Introductilon

Calculations of the energy bands of sollds can be classi-
fied into two broad groups: first-principle calculations which
directly solve a given one-electron crystal wave equation, or
interpolative calculations which describe the bands 1n terms‘

of a minimal basls set and corresponding disposable parameters.

In the first group we 1include Orthogonalized Plane Wave (OPW)l’2

and Augmented Plane Wave (APW)3 methods as well as the Green's

function method)’."5 In the second group are the atomic orbltal

-~

scheme of Slater and Koster® and the semi-empirical approaches

based on pseudopotentials?’B

One of the first approaches to the band structure of solilds
was the LCAO or tight-binding method. The condition for 1its
validity is that the one-electron wave functions be highly local-
i1zed around each atomic core, with small overlap onto adjacent
atoms. This condition is usually well met by the valence states

of the rare gas sollds and ionlc crystals. In particular, 1t has

oarn 1ol A
been used to

(DR =
v

Arnl A~ + 1
LcuasuUura [

~ rre YA
11T vauasc

~ ~

nn Tam A mdeams o
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e ure of KC17 which
roughly corresponds to ?p atomic wave functions localized on the
Cl™ ions.

The valence bands of the alkall halides furnish a simple
example of the utllity of an abstract approach. "Howland considers
separately the aases where the bands are derived from orbitals of
3p(C17) alone (a 3 x 3 secular equation), and where the basis set
contains 3s(C17), 3p(K+) and 3s(K+) orbitals also (an 8 x 8 secu-

lar equation). Energies from these two band structureslo are



listed in Table I. The forms of the bands are seen to be simi-
lar to within 10°% , but the widths differ by a factor of 1.9.
Hence, a good description of the halide valence bands can be
given in terms of only two "effective" overlap integrals (ppo-)
and (ppm). The "effective" overlap integrals turn out to have
the same sign and ratio as those calculated from 3p halide atomic
orbitals, but are only about half as large. The "effective"
basis functions are similar to Wannler functions, which are more
localized and hence exhibit smaller overlap.

In view of the successful reduction of the actual bands
derived using eight basis functions to an abstract model using
only three basls functions and two shape parameters, one may
now carry the process of abstraction one step further and deter-
mine the shape parameters directly from experiment. Thils has
been done for CsBr from optical data; the measured parameters
seem to be only 213 of those calculated from eight basls func-

tions?’ll This 1indicates that a further reduction in calculated

band width would be obtained from a complete set of (exact)
Wannier basis functions. From this example we conclude that an
abstract scheme may actually yileld better agreement with experi-
ment than do first principles calculations. It also establishes
a procedure for obtailning matrix elements between abstract basis
functions (in thié case Wannier functions), although the expli-
clt determinatlon of these functions 1s not required and may be

- Inconvenient in practice.



The formal treatment given in Section II closely parallels
the OPW method. However, calculation of the 34 states requires
a comblned tight-binding and plane wave approac%?-lguch an ap-
proach 1s cumbersome if carried out rigorously. In Section III
we show that existing APW calculations justify representation
of the d bands alone by the Slater~-Koster method. In Section IV,
the s-p conductlion band states are discussed including the ef-
fects of orthogonality to the d bands. In Secticon V we treat
s-d hybridization, and derive a parametric representation for
the s-d potential terms.

At first sight, 1t might appear that treatment of the s-d
interactions could be facilitated by use of group theory. Aloné
certain lines of the Brillouin zone, symmetrical combinatlons of
plane wave conduction band states can be formed which will be
orthogonal to most of the d band states. The symmetry employed
is that of the group of each symmetry line. Thils approach does
indeed simplify the treatment of s-d hybridlzation effects along
the (100), (110) and (111) axes. We have found, however, that
for general k values, thils approach alone makes it very diffi-
cult to parameterlize s-d interactions.

For thls reason we have found 1t necessary to introduce a
much stronger ansatz which is not consistent with group theory.
However, the ansatz 1s valld to a good approximation, and thefein
lies 1ts sultablility for reducing the complexity of the parameter-
] ized representation. We assume that prior to hybridization with

the lower plane waves the radial d wave functions in a given



atomic cell are the same for all | k | and are independent of
band index n. Thus the d states are regarded as part of the

spherically symmetric atomlc core. We Jjustify our isotropic

model for d states by direct comparison with APW band calcu~

lations. |

The Interpolation scheme developed here determines En(g)
throughout the Brillouin zone. Near points of high symmetry
Ed one can also expand En(}i) in powers of k - 50( . This ap-
proach, usually called k:p perturbation theory, furnishes re-
lations between our parameterized interactlions and sheds light
on their analytic character. It 1s dlscussed elsewhere}6

II. General Theory.

To be speclfic, we consider in thils paper only monatomic
fcc metals such as N1 and Cu, although our results could easlily
be extended to monatomic bcc transitlion metals as well. The
basis states are chosen as follows. To describe the 4 bands,
flve states are required. These are taken to be proportional
to xy,'xz, vz, x2 - y2, and 322 - re, which form a convenient
representation for the angular dependence of tight-binding d
states in a cubic lattice. The lowest conduction bands in the
positive 1/48th primitive sectlon of the Brillouin zone (see
Fig. 1) can be described using the four OPW's which are degener-

ate at the point W in the empty lattice. These are labelled



by their principal plane wave components (k +.§1): where the

reciprocal lattice vectors K, are
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Using these basls states, our 9 x 9 Hamiltonian will have

the block form:

_______ (2.2)

In (2.2) d and ¢ stand for d band and conductlon band states,
respectively. At a general point, k, of the Brillouin zone all
the.matrix elements in (2.2) are non-zero.

We assume throughout that our basis functions are orthogonal,
so that our secular eguation has the form

det | Hyy - B ) 13 I = 0

—~
o
\N

N

The assumption of orthogonality 1s essential 1f the abstract
representation 1s to achleve the simplicity desired. We mentlon
here briefly reasons for hoping that a simple parametric representa-~
tion of the matrix elements of (2.3) 1s feasible.

For the d bénds we have the work of Fletcher and WOhlfarth17

who neglected non-orthogonality terms between d orbitals on 4if-



ferent atoms. We will show that the form of the d bands alone, AS
given by APW calculations, 1s very close to that obtained by
Fletcher and Wohlfarth.

For the conduction bands we find it necessary,_in the spirit
of the OPW and pseudopotential methods, to introduce energy-
dependent orthogonality terms. These occur in the c-c block, and
their analytic form 1s determined by our ansatz of d isotropy. Be-
cause the wldth of the 4 band is comparabie to the difference in
energy between the conduction bands and the d bands, these terms are
no longer accurately proportional to (E - Ed), as in the OPW method.
Also less appropriate, near d-c¢ crossover points, 1s the pseudo-
potential approximation E — EC, where Ec is a free-electron energy.7’8

Our procedure for establishing each term in the secular
equation is to make the general ansatz of d 1sotropy and then to
determine the radial behavior of each term as a function of k by
direct comparison with energy bands obtained by APW calculations.
involving much larger secular equations. The full significance
of this.procedure will be treated in our summary. We find that
the approximations to the orthogonality terms mentioned in the
preceding paragraph often produce only small errors, and that for
many purposes a simpler representation is adequate. Nevertheless,
the full matrix form represents the most consistent and logically
correct developmént of the 1sotropy ansatz, and hence forms

the basis of our exposition. Our ultimate criterion for




the successful reduction of the large secular equation--as well
as our Justification for the parameterization of the various
terms in the Hamiltonian--will be the same one used in developing
pseudopotentials, viz., success in obtaining En(g).itself for the
bands n of interest.

III. Tight Binding Representation of 4 Bands.

The tight-binding approximation may be formulated in several
different ways. One may retaln or neglect non-orthogonality terms
between nearest neighbor basis functions. When the non-orthogonal-
ity terms are eliminated by unitary transformation of the tight-
binding basis functions, the new basis functlons are called Wannier
or L8wdin functions. Although this transformation does not alter
the atomic symmetry of the basis functions and considerably simpli-
fies the secular equation, 1t 1s difficult to carry out accurately.
Another varlation consists of néglecting three-centered integrals
and non-orthogonality terms. This simpliflicatlon, called the two-~

center approximation, leads to substantlal reductions in the num-

Neglecting the s-p conduction bands, Fletcher and Wohlfarth17
have calculated the band structure of N1 using the two-center ap-
proximation. They obtain a 5 x 5 secular equation in terms of
certain nearest neighbor overlap integrals. These they calculate
using wéve functiona and a potential :derived by Hartree and Har‘breel8

for Cu+. Although FW calculate six parameters, these are exactly



equivalent to linear combinations of three two-center parameters.

The relations satisfied by the six FW parameters in the two-center

approximation6 are:

Ay = - § (ado +adf )

Ay = % (ddr + dd§ )

Ay = L (adr - dd§ )

A, = ddr (3.1)
Ag = - + (£ ado +dar + ¢ das )

Ag = - g (ddo- - dd§ )

Using our combined interpolation scheme, we have fitted the
d bands and conduction bands of Cu as calculated by the APW method}g
Initially, we treated the general parameters such as A 1in (3.1)
as independent. Our best values for the first nelghbor parameters
can be used to determine the three two-center, nearest nelghbor
overlap integrals. The result, in terms of our parametersiP1 (see

appendix B), is
1 . - !—1 . L -
ddo = (P3 'F‘ P6), (P7 3 P6)),2 (3P3 P7) (3.2)

ddr

(P + P5); Pg (3.3)

ad§

(p5 + {3 Bg)i 3(3p7 = P3); (By - Pg); (\r—;-.- Pg + Py)
(3.%)



We compare the fitted left-hand sides of (3.2) - (3.4) with the
values for the right-hand sides derived from (3.1) in Table II. It
appears that the two-center approximation 1is valid to about 6%.
The corresponding differences in d band energy levels are at most
0.004 Ry., with one exception.

The exceptionally large three-center contribution 1s repre-
sented by the zero of energy of r;5, relative to r;e, which 1is
described in the notation of ref. 6 by Ell(OOO) - E55(OOO) = 0.008 Ry.
(Note that this 1is not equivalent to [12 - [55,.) We have there-
fore included this correction explicitly in the Hamiltonian, but
have otherwlse made the two-center approximation.

The detailed evaluation of the E or F parameters is given in
Appendix A. Briefly, the method consists of obtalning a set of
linear equations in the parameters through the natural factoriza-
tion of the secular equation at Brillouin zone symmetry points and
along symmetry lines. The matrix elements of the d part of the
Hamiltonian can now be obtained from Slater énd Kosterl!s Table III
(reprdduced in Appendix A). providing that the zero of energy para-

meters are go for the triplet degeneracy at r1and + ¥ for the

4,
doutlet degeneracy where ¥ = 0.008 Ry. in Cu.

We conclude by discussing the four second neighbor E para-
meters, These were included in the determination of parameters
discussed in Appendix A, but they were found to be so small (<0.001 Ry.)
as to have a negligible effect on the band structure. For this

reason, we have not included them in our final scheme. Altogether,

this leaves the 5 x 5 d-d block parameterized in terms of QO’ v,
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ddo , ddr and dd$ .

IV. Representation of Conduction Bands.

At first glance, the calculated conductlon bands of transi-
tion and noble metals appear to be nearly free elegtron in charac-
ter. However, on closer examination, one sees that there are marked
deviations in the lowest conductlon band,Adepgnding on whether one
is above or below the d bands. Moreover, the Bragg splittings at
the symmetry points X and L are much larger than those found in
"simple" metals such as Al.

To 1llu$trate these deviations, we have plotted in Fig. 2
Segalll's res&ltsgo for the first and second conduction bands in Al
and the corresponding bands 1in Cu?1 It 1s clear that the a4 bqnds
are responsible for several differences 1n behavior which we analyze
in two limits. In the first, the conduction band is close to a d
band of the same symmetry. Here hybridization has taken place--
the d band and conduction band are split egually above and below

he absence of interaction. We call
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effect.

In the second limit, the conduction band 1s well above the
d bands. There the conduction band is shifted above the free elec-
tron band by a roughly constant amount. Note, however, that the
shifté are different for the various symmetry directions (100),
(110), and (111); being in the ratio (1:2:1) respectively. (Note
that this 1s also the ratio of the number of d bands whose group
representation 1s the same as the lowest conduction band for these

three symmetry directions.) Thus, 1f we wish to incorporate these
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deviations into the secular equation, we must have terms that are
both angularly as well as radially dependent.

The hybridizing and repulsive effects are indicated for the
19

enérgy bands of-Cu’along the (110), (100) and (111) symmetry a:es
in Fig. 3 (a)-(c), respectively. Our task now is ﬁo construct an
analytic representation of these effects\ Procedures for obtaining
the hybridizing terms will be discussed in the following section.
To determine the repulsive terms, we assume that in terms of
pseudoplane wave states |E:> the conduction band state |QQ> has

the form

19> = [l ky - DMy, (k) [an> Jo™ (4.1)

where the normalizing factor Ck 1ls given by
2 - L ?
/ ckl =1 -%jp%n.(gn (4.2)

Qur assumption of d isotropy can be used to determine the ortho-
gonality coefflcients M, (k) as follows. Let a d basis function

be written as
and = pa, (2) = ¢ F ¢ (x/r, y/r, 2/7) &(v) (4.3)

where Cn 1s the normalizing factor for the cublec harmonic Fnd.

Then

B | S

c, F.% (k/x, ky/k, k,/k) £(k) (4,4)

Man (k)

Because of d isotropy f i1s a function only of k, and not of k. The

explicity parameterization of f(k) is given below,
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Matrix elements in the 4 x 4 conduction block are given by
’ -1 -1
. ¢5 ’Hl fE:> = QE CE. (I + II + III + IV] ,(4'5)
where in units with h2/2m = 1,

Is (K +V,) 6, +7V (1 - (4.6)

e F Vg (7 bpge )
The terms V, _, ., represent the sum of the matrix elements of the
crystal potentlal V and the repulsive potential VRc between

reciprocal lattice plane waves7’8. We let K, denote all the (111)
and (200) reciprocal lattice vectors. For K, larger than Ki’ we
can apply the general cancellation arguments” and set V(KJ) = 0,
Thls leaves us with two conduction band pseudopotential parameters

v and V .

111 200

One finds that Vlll and V200 alone produce band gaps compérable
to those of the "simple" metals. In Filg. 2, we have labelled this
part of the splitting of L

and L by 2V

1 2’ 111°

The d-d orthogonality terms in (4.5) are
a d ’
IV = T € Cpy Fn(g) Foo (') £(k) £(k" ) By g (4.7)

where Hdn an' 1s the appropriate matrix element between the tight-
3
binding 4 states contained in the d-d block. The cross terms can

be shown to have the form

II + III =V - 2(IV) (4.8)

V=g £iFa(k) By (k') [0 elk) £(k') + Cp, g(k')f(k)) (4.9)
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where g(k) is the hybridizing form factor discussed in section 5.

For our matrix element we finally have

Lot [T+V - 1v) | (4.10)

<O 1Bl 4> = ¢

We must also consider the terms

where OT represents positive orthogonality terms. The normalization
factors in (4.11) make the diagonal coefficient of E unity. The
off-diagonal OT are inconvenient, and 1if retained would complicate
the machine solutlion of the secular equation considerably.

In the pseudopotential approximation to the OPW method the
terms E(OT) are grouped with the terms -Ed(OT), which are represen-
ted by IV in (4.10). One then makes the replacement E *%fz (an
average plane‘wave energy) and assumes that the d bands are narrow
(Ed -9'Eg). The resulting OT are proportioned to i: - E; and are
manifestly invariant to a change in the zero of energy.

In our case, we have found it simpler to proceed as follows.
The conduction band width § E, 1s large; in fact éEc > (ﬁ: - Eg).
However, one can consider the OT 1n two limits: near s-d cross-
overs and near the (200) and (111) Bragg scattering planes. In
the former case direct calculation shows that very good resulté
are obtained by neglecting the OT altogether compared to the hy-
bridization terms. This 1s not surprising, for the hybridization
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terms are large 1n magnitude and have a larger effect because of
the quasi-degeneracy of the d bands and conduction bands.

On the other hand, near the Bragg scattering planes the non-
dlagonal OT can be made small by a proper choice of the zero of
energy. We have found that setting E (X) = X2 + Vﬁ = 0 gives
good results for conduction band states at L, X and W.

[ By neglecting E (5) +'V% gt L and W, we in effect, absorb
small OT into our pseudopotential parameters. Again direct cal-
culation shows that the error incurred is small.]

From d isotropy, one can see that as k- 0, f(k) 1s of order

k°. Thus a convenient form for (k) is

f(k) = A 3, (kRo) (4.12)

where J2(x) is the second spherical Bessel function that is ob-
tained in the OPW method by expanding plane waves in terms of Le-
gendre polynomials. To improve convergence f(k) is cut off beyond
1ts second node. The value of IR. 1s 2.9 for Cuand A =1.3 ., 1In
Fig. 4, we show f(k) explicitly. The procedure used to determine
A and Ro 1s described in Appendix B.

The orthogonality terms are responsible for the large Bragg
splittings at X and L, which are asymmetric with respect to the
free electron energles at these point. For example, neglect the
effects of s-d hybridization (section 5) and consider the conduction
band structure assoclated with only the two lowest plane waves near

X or L’(Xu, and X,, or L,, and Ll). Here the lowest two bands have

1
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wave vector k and -k. We extract from the secular equation these

degenerate levels glving a 2 x 2 determinant:

2
K"+ a - A a + V2K
+ VO
deu. =0 (4.13)
2
a + Vo K +& - A

+ V0
where A is the eigenvalue, K2 is the klnetlc energy, V2K is
V111 or V200 for L and X respeétively, and a 1s the term derilved

from orthogonality. Solving this simple determinant ylelds:

A = (K2 +a)t (V’2K + a) + v, (4.14)

Hence we see that for the lowér (0odd symmetry) eigenvalue the ef-
fect of orthogonallity 1s identically zero, whereas for the higher
(even symmetry) level 2a is added. The asymmetry of the repulsive
term a in the two elgenvalues shows that marriage of tight-binding

and plane wave techniques reguires orthogonalization of the plane

wave states to the 4 states.

Another approach which reveals a relation between the tight-
binding diagonal block and the plane wave biock, and which is in-
dependent of s-d hybridization,is based on kep perturbation theory
near X or L. One can then show that orthogonalization terms in
the latter block‘are required to balance overlap (finite band width)

terms in the d blocki®
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V. s-d Hybridization.

In this section we conslder the matrix elements of the Hamil-
tonlan in the off-dlagonal blocks c¢-d and d-c. Although the con-
duction basls states given by equation (4.1) have been orthogon-
alized to the d basls states, c-d matrix elements will still be
non-zero 1ln general. In fact near c-d cross-overs, where the
orthogonality terms are small, the hybridization terms alone
separate ¢ and d terms belonging to the same irreducible rep-
resentations.

It 1s consistent within our 1sotropic approximation to rep-
resent the crystal potential as a superposition of spherically
symmetric atomic potentials. Just as second-neighbor d-d over-
lap was found to be small compared to nearest neighbor overlap,
SO we neglect nearest nelghbor overlap In computing the hybridi-
zatlon term. Thus we regard the mlxing as derived from inter-
actions in a spherically symmetric central cell.

Using (4.1) we have

<dn/H', 0> = opt U LanlHIK>  -Hy Mg, ()]
(5.1)

Strictly speaking H'.in (5.1) includes both the crystal potential
and the repulsive terms arising from orthogonalization of the
plane wave u£>v to the s and p core states. With complete 1so-
tropy the latter would vanish in determining the matrix element

(5.1) with d states. 1In any case we are not concerned here with
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the details of (5.1). For our purposes it is sufficient to write

<dn [ HI 9> = £ k) 9 (k) (5.2)

where g(k) 1is an isotropic hybridizing form factor. With the

absorption of the normalization factor,'C the definition (5.2)

k)

1s consistent with (4.9).

To be completely consistent one should represent the first
term on the right hand side of (5.1) by a form factor g'(k) and
determine g(k) from g'(k) using (5.1). 1In practice the effects
of hybridizing are dominated by the first term, and it 1s not
profitable to carry through this separation.

Again 1t can be shown that, as k = 0, we have g(k) = K°.

Thus for small k we set

g(k) = BJ;(kR,) (5.3)

with IR, = 2.9 and B = 13.8 eV in Cu . We show g(k), including
a linear cutoff at large k, in Fig. 5.

For a given crystal potential and an assumed 4 wave function
(e.g., taken from the free atom) we could evaluate (5.1). However,
to obtaln agreement with APW calculations is would then be neces-
sary to include the effects of higher plane waves on the d states.
For reasons discuséed in our introduction and summary, this is Just

what we wish to avoid. The form factor g(k) introduced here in-
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cludes these effects consistently both in equation (5.2) and
in equation (4.9).

In Appendix B we discuss in detail the method used to deter-
mine g(k). It 1s similar to that described in section 3 for deter-
mining the d band parameters. There we consldered only d band states
of symmetry different from the conduction band. Here we use d
band states along symmetry llnes of symmetry types the same as
those of the crossing conduction bands. Between these d and
conduction bands we have both hybridization and orthogonality
terms. The effects of the former are larger near s-d crossoversJ
[As discussed in the preceding section, we found 1t convenient |
to neglect certain orthogonality contributions to the matrix ele-
ments 1n the region, because of 1its tight-binding character. Had
we retalned these terms, and introduced other (ess accurate) ap-
proximations instead, the orthogonality terms could have been
forced into the fomm (E—Ed)‘Mdﬂ(k)|2. In this form one can see
explicitly how to separate the hybridization splittings from the
orthogonality terms, by assuming that the latter vanlsh near s-d
crossovers and using the construction of Fig. 3.] Indeed we find
that near s-d crossovers the hybridization terms actually domlnate
so strongly as to yleld an unamblguous separation. On the other
hand, near the zone faces where Bragg scattering takes place,
the orthogonality terms dominate and the hybridization form

factor can be determined by iteration.

Another method for separating hybridization from orthogonallty
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terms near the zone faces relies on the k-p perturbation theory16
near X and L. This method is extremely accurate in the immediate

vicinity of symmetry points, but the interaction method describedv
in Appendix B ylelds more genéral results throughout»the Brillouin
zone. These are also qguite accurate, and appear to approach the

limitations inherent in the ansatz of d 1sotropy.

VI. Evaluation and Simple Applications

To fit the d bands of a monatomic fcc metal using our method,
certailn parameters must be specified. For the conductlon bands
alone there are two parameters——vlll and VéOO' The position and
shape of the d bands alone are fixed by filve parameters--io (the
J-BanJ energy relative to the conduction bands), ddo, ddw, dds,
and the three-center parameter y. Finally the s-d interactions are
specified by A, B, R, and Ry in equations (4.12) and (5.3). For
convenience these cleven parameters are listed in Table VI, Values
are glven there which fit the energy tands of Cu as determined
by Burdick from an R-1independent potential using the APW method19,
as well those calculated by Segall using an {-dependent potential in
the multiple scattering formulation®0~2%,

By examining the table one notices several differences between
Burdick's and Segall's calculations which arlise from the L -dependent

potential used by the latter. Segall's d wave functions are more

extended than are Burdick's. This is reflected in the d band overlap
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parameters, which are about 30% greater for Segall's bands than for
Burdick's. The orthogonality and hybridization strengths (A and B,
respectivély) are 20% and 5% greater, respectively. (We believe that
this indicates that the two effects cannot be combined into one.)
The pseudopotential parameters V111 and Véoo are also changed, and
are larger for Segall's bands than for Burdick's, reflecting the fact
that the h-dependent potential leads to greater c¢-d differences, and
somewhat stronger c¢-c interactions. The scale factors RO and Rl
change by 5% and 16%, respectively, which agaln suggests the inde-
pendence of the hybridizing and orthogonallty terms.

The accuracy of the scheme can te tested 1n several ways. The
overall rms deviatlion between our valuves and those of Burdick for
the first six bands (5 4 bands and lowest conduction band) at 89
points of the Brillouin zone 1s 0.08 eV. The values at ', X, L and
W are compared in Table IV; for these points the rms devliatlon 1s
0.07 ev. Similar results are obtained 1n fitting Segall's bands.
The mnst critical test of the parameterdization 1s obtained by com-
paring the rms deviation of the set of ZC points used to determine rela-
‘tions among the parameters filtting Burdlck's bands with that of the
set of 40 points not used; the two values are 0.07 and 0.08 ev,
respectively. It can be seen that within statlstical uncertalntiles
the deviations are identical. Moreover, the uncertalnties in var-
ious APW Cu energy levels (apart from those assoclated with do’ the

position of the d bands relative to the conductlon bands) are still



larger than these rms deviatlions, g0 that a more accurate fit might
not be significant. Finally the levels at X, L, K and W in the
second conducstion band are reproduced with an accuracy comparable
to that of the first principles calculations,

As a simple applicaticn cof cuves scheme we have calculated the
density of states g(E) in the d hand regi:n both with and without
mixing of the d bands and conduvctirn hands., In the calculations
preser.ced below we have constructed hist.gram densltles of states
based on tre lowest 6 elgenvalues of cur 9%h crder secular equa-
tions at 4500 randomly selected poin®ts in 1/48th of the Brillouin

occupation,
zone., With an energy interval of 0,0C025 ryd this glves an average A
ni)of T3 and an rms fluctvaticn in L i about 5%, If one so
desires (as we did in the comparisons telow) the same random
selecticn can be used in each set of samples.

We have considered three band structures related to Burdlck's
Cu bands. The first, given in Pig. A, corresponds to the d bands
alone., This case (which has heen c¢zloilated bef;rega) was used
as a check on the technique. We see trat this 13 quite similar to
the results obtained previously, except that our Fig. 6 has more
structure due to the seven times larger random sample,

In the other two cases (shown in Figs. 7 and 8) we have added
the s-d interactions to the bare d-band structure cof Fig. 6. The
band parameters fof case 2 are taken fiom the filt to Burdilck's

calculation discussed in preceding section. Case 3 has the same



band parameters, except that the position of the conductlon bands
has been changed wlth respect to the d band complex. Here we have
increased the zero of energy 4o of the d bands relative to the |
conduction bands, leaving the remalning parametersunchanged.

Case 2 (Fig. 7) has do = +5.8% eV, (copper-like); whereas Case 3
(Fig. 8) takes d = +T.20 eV (nickel-like),

By comparing Fig. 8 with Fig. 7 we see that shifting the
conduction bands relative to the 4 bands leaves the denslity of
states throughout most of the d band reglon almost unchanged.

This is what one would expect from a rigid band model, neglecting

s-d mixing altogether. Both the large peaks 1n the density of states
near 0.3 and 0.4 ryd. and weaker peaks near 0.22 and 0.35 ryd. are
little changed, indicatling that they arise from states of almost pure
d character.

In Fig. 7 and Fig. 8 we have indicated energies at the symmetry
points T, X, L and W, These produce Van Hove edges in the density
of states. Other critical points are important, however, and these
are not located at symmetry points. (E.g., the peak in the density
of states near the top of the d band, which 1s commonly supposed to
explain the high specific heat of Ni, is caused on the higher side
by the L3 edge, and on the lower side by an unidentified critical

point.)
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VII. Conclusions

The aim of this paper has been to develop a combined inter-
polation scheme which could reproduce the energy bands of transi-
tion and noble metals within O.1 eV and which would depend on the
smallest pcssible number of parameters., In reaching our goal we
have shown from APW calculations for Cu that

(1) Only nearest neighbor interactions in the two-center
approximations (plus one three-certer term) are required for the
d bands;

(2) Only two pseudopotential parameters are required to de-
scribe the lowest conduction band;

(3) That conduction band-d band interactlicns are of two kinds.
The first, hybridization, 1s well known, but 1ts magnitude has
been evaluated and it has been shcwn (apart from spherical har-
monic factors) to be isotropic. The presence of the second inter-
action, a repulsive one arising from the requirement of orthogonall-
zatlion of basis states, had not previcusly been recognized in APW
calculations;

(%) Both conduction band-d band interactions are describable in
terms of form factors. Although the factors are simllar, they
appear to be independent.

Some of the assumptions upon which our calculatlions are based

24,25

have been discusséd in several recent papers The 4 bands are

regarded as a resonant level overlapping the conduction band, and




the phase shift of the resonant level is introduced using
scattering theory. These discussions are entirely formal, wheref
as our results demonstrate explicitly that an abstract approach can
reproduce APW or multiple scattering calculations very accurately.
Although previous formal discussions based on phase shifts have not
been able to separate hybridizing and orthogonality terms, we have
shown that both terms must be included to achieve high accuracy.

A major unsolved problem for the resonance theories is how to in-
corporate five (rather than one) d resonance levels into the theory.
We have avolded this problem at the outset and then have gone on

to demonstrate (we belleve for the first time) the validity of the
two-center approximation. A precise sense in which the resonance
analogy 1is valid is analyzed in the follcwing paper16.

Because of the simpliclity and generality of the interpolation
scheme, 1t should have wide applications to many problems in the
quantum structure of materials containing overlapping conduction and
d bands, Jjust as the simple pseudopotential methed has successfully
treated s- and p-band crystals. We mention only two applications
which follow 1lmmediately from the method in its present form.
Flrstly one may determine parametrlc values to yleld very accurate
fits to observed Fermi surfaces. Secondly the high speed of the
method together w;th the natural character of the basis states
(atomic d states or plane wave conduction states) makes calculation
of direct interband optical spectra, including proper oscillator
strengths, straightforward. We hope to return to these applications

elsewhere,
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APPENDIX A

In Table V are listed the twelve parameters
glven by the zeroth, first, and second neighbor general
overlap integrals. There are two difficulties in deter-
mining these parameters from a given band structure calcu-
lation. First, the elgenvectors of an energy level are
not, in general, wholly d, but have some hybridization
with the conductlion bands. Second, even in those levels
which are most d-like, the energy level will depend on
several of these parameters, rather than on one or two.

Both of these difficulties can be overcome by
considering energy levels at points in the Brillouin
zone of high symmetry. Then only one, or at most two, of
the d levels will have a symmetry type identical to some
low conduction band, and only these d levels will hybrid-
ize. The remaining levels at this point can be used to
determline linear relations among the parameters. 1In addi-
tion, along symmetry lines, the secular eguation conven-
lently factorlzes into many relations among few parameters.

The?e is one more criterion for selecting rela-
tlions among the parameters. The points and levels should
be chosen so that the resultant statistilcal weilght of each
parameter is approximately the same. This results in

equal errors in the parameters. Equallty in statistical
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welght can be guaranteed 1f the polnts used are equally
spaced along each symmetry line.

The evaluation of the parameters for copper was
a simple matter since the energy bands had been calculated
by Burdick at 89 points in the Brillouiln zone and 2/3 of
these pcints were along symmetry lines. Thus, approximately
150 useful levels remailned after combining with 5 d~levels,
roughly half of whlch were unhybridized or non-degenerate
levels. Of these we selected 48, so that each parameter
was represented approximately five times. (Note that one
of the two zeros of energy must appear in each eguation.)

These relations yleld the overdetermined linear eqguations

Aij' Xj = Ez,' (A-1)

where /A 1s the rectangular coefficient matrix, E

I} i

are

the energy eigenvalues, and X, are the parameters. (We

J

sum on repeated indices.)

The R-M-S deviation of the XJ will be minimized

if

/A\LK/A\.;_:}‘X]' ::’4/.,(’ /—C—_

Calling ALkALj:ij' and ALk EL- :D,é s

then C: is a symmetrical, non-singular, square matrix.
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The deslired parameters are given by
-/
Yj- =(C )xj 4 . (43)

We can solve (A-3%) using standard routines from a computer
library such as SHARE.

In Table V we list these parameters, as well
as the values calculated by Fletcher and Wolfarth. The
similarity in values is remarkable, conslidering the di-
vergent sources of the two columns.

By allowing a full three-centered treatment of
the 4 bands in copper, we have shown that an additional
restriction to two-centered overlap integrals makes a
negligible error in the band structure. Henceforth we
shall calculate the d bands in two-centered approximations
except for the zerc-of-energy parameter i. Table VI lists

the d band matrix elements as derived from Slater-Koster6
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APPENDIX B

The cholce of Bessel functions j, (kR) to parameter-
1ze the hybridization and orthogonality form factors is
a naﬁural one. The scale factor R represents an average
of the values of r for which the c¢-~d potential interactions
or overlap (respectively) are largest. The best value of
R, whilch should not change greatly from one transition
metal to the next, are determined as described below.

For larger values of k the replacement of a weighted
value of Js (kp) over a range of r by a local value o (kR)
willl obviously be poor, because Jo (kr) oscillates in sign.
Thls effect 1s incorporated into the form factors by intro-
ducing a linear cutoff at large k. This cutoff plays a
small rdle in our calculations, because of the nearly
spherlcal shape of the fcc Brillouin zone. However, a
much greater effect is expected when the Brillouin zone
1s more anisotropic, as for bec crystals.

The "longest" radial symmetry dimension of the fecc
zone appears to be T'ZKX. The lowest conduction band along
KX 1is 23, and when this band 1s continued onto £ = T'K, it
becomes the second lowest conduction band. For this range
of k the cutoff effects are important. They can be separ-

ated by noting that the 22 and 23 d bands are symmetrical
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with respect to FQSL In the absence of interactions with
the conductlon bands. This symmetry holds well for k
between I' and K/2 so that a linear cutoff was introduced
between K and3K/2.

With eleven parameters to be determined, it was neces-
sary to develop simple schemes to find best values. Our
scheme proceeded as follows. With the values of the d
band parameters determined as described in Appendix A,

A, B, Ro and R, were determined approximately by solving

1
2 x 2 and 3 x 3 ¢c-d interaction secular equations along

Ay, A, £ and Z. Wlth these approximate values the rms
deviation of the fit was determined to be about 0.2 eV.

The parameters were varied by fixed increments and quad-
ratic interpolation was used to minimize the rms deviations.
This procedure converged rapidly (5 minutes on an IBM

7094) and uniquely to the values of the parameters quoted
in Table III.
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Table II,

Table III.

Table IV,

Table V.
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TABLE CAPTIONS

Ratlo of the energy differences of two calculations
of the valence bond structure of KC1l (see reference 9).
Comparison of our derived two-center parameters W1th
those calculated by FW from Cu+ d wave functions. The
deviation of the varlous values from their mean is a
measure of the validity of the two-center approxima-
tion.

Values of model parameters chosen for two copper band
structures (ref. 19 and 20). The significance of
differences between the parameters is discussed in
sectlon VI.

Interpolated values of the lowest seven levels at T,
X, L, and W as obtained from the parametric values
listed in Table III are compared with the calculated
values of Burdick (ref. 19) and Segall (ref. 20).

The rit is equally gcod in hoth cases. (All values

are listed in rydbergs.)

The values of the Slater-Koster overlap parameters

%
o)
"

Ei as obtalned from fitting Burdick's band structure
Cu are shown in column 4., These are to be compared
wlth the values listed in column 5 obtained from the

two-center formulae of column 3. The values of ddc)



Table VI.

3¢

ddmr,and ddé were also obtained by fitting Burdick's Cu
bands and are listed in Table III. The percentage
differences listed in the last column provide an indi-
cation of the vallidity of the two-center approximation.
The matrix elements of the d-d block in the two-center
approximation. The symbol x represents k. a/2 and

similarly for y and z.
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TABLE I
(3x3) (8x8) Ratio of
Energy Secular Secular $3x3g differences to
levels equation equation 8x8) differences
(ev) (ev)
rls- XS' 0.56 0.27 2.07
Pls— Xu, 1.63 0098 1.66
X5,- Xy 1.07 0.52 2.05
L3,-‘F15 0.42 0.24 1.75
r15' L2, 2.44 1.26 1.93
L3,- Ly 2.87 1.51 1.90
Mean Ratio = 1.89




b

TABLE II
Value derived Value
Overlap from RMS calculated
parameter (3.2) -~ (3.4) Mean Deviation % by FW
ddo -0,348 ev -0.348 ev 0.0 % -0.338 ev
-O¢3)+8 eV
-0.348 ev
ddr +0.163 eV +0.178 eV 8.4 % +0.182 ev
+0.192 eV
dds -0.0217 eV -0.0213eV 2.7 % -0,026 eV
-0.0217 eV
-0.0204 ev



Parameter

d Bands do
ddo
ddmw

dds

Conduction \Y

Bands

Orthogonallty A

Hybridization B

Errors /of

TABLE III

Burdick

+5.84
-0.35
+0.18
-0.,02

+0.,08

+0.07
+0.46

eV
eV
eV
eV
eV

eV

eV

1.29
2.88

13.78

eV

2.93

0.06

eV

Segall

+4,95 ev
-0.45 ev
+0.24 ev
-0.04 ev

-0.01 eVv

+ 0.26 eV
+0.55 eV

1.59
3.03

13.92 eV
3.47

0.08 ev



TABLE IV
Interpolation Int.
Level Burdick point fit Segall fit

Ty -1.043 -1.043 -0.836  -0.837
o5 -0.640 -0, 647 -0.505 -0.510
T1p -0.582 ~0.5T4 -0.433  -0.426
X3 ~0.776 -0.776 -0.666  -0,667
X3 -0.739 -0.740 ~-0,630 -0.634
X, -0.540 -0.535 -0.383  -0.376
Xg -0.527 -0.534 -0,366  -0.371
Xy -0.235 -0.243 -0.024  -0,032
Xq © +0.152 +0.145 +0.389  +0.401
L, -0.775 -0, 774 -0.646  -0.638
Ly -0.642 -0.648 -0.511 -0.518
Ly ~-0,538 -0.543 -0.380  -0.385
L,, -0.429 -0.435 -0.247  -0.241
Ly -0.094 -0.099 +0.189  +0.201
W, -0.723 -0.718 -0.607 -0.599
Wy -0,671 -0.676 -0.537 -0.536
Wy -0,585 -0.583 -0.438  -0.,438
Wy -0.527 -0.536 -0.365 -0.371
w3 +0.105 +0.116 +0.310 +0.313
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Flgure Captilons

1) The Brillouin zone of the f.c.c. lattice showing the 1/48'th
primitive wedge used in the calculations.

2) Schematic representation of the hybridization and repulsive
effects retween the Cu d bands and the lowest two conduction
bands al 'ng the symmetry line A. Only the bands of Al sym-
metry are shown. The dashed lines show the'unperturbed bands
of Al or the tight-binding 4 band of Cu in the absence of these
two effects. (The Al bands have been scaled so that(ll%i a1 =

(%ki) . at k = L.)
m /cu

3) The energy levels of Cu. The 80lld circles represent the
calculated values of Burdick (reference 19) and the solid lines
represent the interpolated bands obtained using the parameters
listed in Table III. The small dilfferences shown on the scale

of the so0lild circles are genuine and can be ascribed to break-
down of the ansatz of 4 1sotropy.

4) The repulsive form factor f(k) exhibits a maximum for k near the
Brillouin zone edges. The value of f(k) shown here is taken from
the parameters used to fit Burdick's band structure (see Table III).

5) The hybridization form factor g(k)., One can show that crystal
symmetry requires that g'(k) = O for k = L and X, where the
prime indlcates the directional derivative of g(k) normal to
the L or X face (respectively). Our assumption of g isotropy then
suggests that if this 1s satisfied exactly g should be flat for



6)

T)

8)

42,

k between L and X . We have chosen to ignore this condi-
tion, because as shown here g'(X) 1s very nearly zero, and

g'(L) 1s small, As a result g has a simple analytic form.

The linear cut-off discussed in Appendix B begins at lYak/m =

9.3. ,

The density of d band states in Cu retaining the width due to the
tight-binding interactions ddo, ddmr, dds but omitting the conduc-
tion bands as well as their interactions with the 4 bands.

Flve major peaks appear in the density of states, at 0.27,

0.29, 0.33, 0.36 and 0.39 ryd.

The density of d band and conduction band states using the
Burdick d band parameters as in Fig. 6, but including inter-

actions with the conductlion bands. In the d band region the

densitles of =states are qualitatively similar, but
AV vens ey Aavmdlidadderan AL OCAvmAMAANAS AvA ormmamand Mhywva +ha anls
LMUWINC L'UUT YUGILVAL LA VA VT ULLLITLITIIVLO LY QLT appyal iive diived v A=127.9

P
present in Fig. 6 at 0.27 ryd. has disappeared, while the 0.29
and 0.33 ryd., peaks of Fig. 6 have merged 1ﬁto one peak here
at 0.31 ryd. The peak at 0.22 ryd and the shoulder starting
near 0.15 ryd. arise from those states near the bottom of the
d band which hybfidize strongly with the conduction band.
Here the conduction band has been shifted relative to the d
band by-1.4 eV, The effects on the density of states are very
small, as can be seen by comparing with the density of states

shown in Fig. 7. For many purposes thils provides Justification
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of the rigid band model often used to discuss the properties

of transition metal alloys.
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